Supercooled Liquid Water Clouds in Utah Winter Mountain Storms: Cloud-seeding Implications of a Remote-Sensing Dataset

1993 ◽  
Vol 32 (9) ◽  
pp. 1548-1558 ◽  
Author(s):  
Kenneth Sassen ◽  
Hongjie Zhao
Author(s):  
Thomas O. Mazzetti ◽  
Bart Geerts ◽  
Lulin Xue ◽  
Sarah Tessendorf ◽  
Courtney Weeks ◽  
...  

AbstractGlaciogenic cloud seeding has long been practiced as a way to increase water availability in arid regions, such as the interior western United States. Many seeding programs in this region target cold–season orographic clouds with ground–based silver iodide generators. Here, the “seedability” (defined as the fraction of time conditions are suitable for ground–based seeding) is evaluated in this region, based on 10 years of hourly output from a regional climate model with a horizontal resolution of 4 km. Seedability criteria are based on temperature, presence of supercooled liquid water, and Froude number, which is computed here as a continuous field relative to the local terrain. The model’s supercooled liquid water compares reasonably well against microwave radiometer observations.Seedability peaks at 20–30% for many mountain ranges in the cold season, with the best locations just upwind of crests, over the highest terrain in Colorado and Wyoming, as well as over ranges in the Northwest Interior. Mountains further south are less frequently seedable, due to warmer conditions, but when they are, cloud supercooled liquid water content tends to be relatively high.This analysis is extended into a future climate, anticipated for later this century, with a mean temperature 2.0 K warmer than the historical climate. Seedability generally will be lower in this future warmer climate, especially in the most seedable areas, but when seedable, clouds tend to contain slightly more supercooled liquid water.


2019 ◽  
Vol 12 (12) ◽  
pp. 6845-6864
Author(s):  
Darielle Dexheimer ◽  
Martin Airey ◽  
Erika Roesler ◽  
Casey Longbottom ◽  
Keri Nicoll ◽  
...  

Abstract. A tethered-balloon system (TBS) has been developed and is being operated by Sandia National Laboratories (SNL) on behalf of the U.S. Department of Energy's (DOE) Atmospheric Radiation Measurement (ARM) User Facility in order to collect in situ atmospheric measurements within mixed-phase Arctic clouds. Periodic tethered-balloon flights have been conducted since 2015 within restricted airspace at ARM's Advanced Mobile Facility 3 (AMF3) in Oliktok Point, Alaska, as part of the AALCO (Aerial Assessment of Liquid in Clouds at Oliktok), ERASMUS (Evaluation of Routine Atmospheric Sounding Measurements using Unmanned Systems), and POPEYE (Profiling at Oliktok Point to Enhance YOPP Experiments) field campaigns. The tethered-balloon system uses helium-filled 34 m3 helikites and 79 and 104 m3 aerostats to suspend instrumentation that is used to measure aerosol particle size distributions, temperature, horizontal wind, pressure, relative humidity, turbulence, and cloud particle properties and to calibrate ground-based remote sensing instruments. Supercooled liquid water content (SLWC) sondes using the vibrating-wire principle, developed by Anasphere Inc., were operated at Oliktok Point at multiple altitudes on the TBS within mixed-phase clouds for over 200 h. Sonde-collected SLWC data were compared with liquid water content derived from a microwave radiometer, Ka-band ARM zenith radar, and ceilometer at the AMF3, as well as liquid water content derived from AMF3 radiosonde flights. The in situ data collected by the Anasphere sensors were also compared with data collected simultaneously by an alternative SLWC sensor developed at the University of Reading, UK; both vibrating-wire instruments were typically observed to shed their ice quickly upon exiting the cloud or reaching maximum ice loading. Temperature sensing measurements distributed with fiber optic tethered balloons were also compared with AMF3 radiosonde temperature measurements. Combined, the results indicate that TBS-distributed temperature sensing and supercooled liquid water measurements are in reasonably good agreement with remote sensing and radiosonde-based measurements of both properties. From these measurements and sensor evaluations, tethered-balloon flights are shown to offer an effective method of collecting data to inform and constrain numerical models, calibrate and validate remote sensing instruments, and characterize the flight environment of unmanned aircraft, circumventing the difficulties of in-cloud unmanned aircraft flights such as limited flight time and in-flight icing.


2019 ◽  
Author(s):  
Darielle Dexheimer ◽  
Martin Airey ◽  
Erika Roesler ◽  
Casey Longbottom ◽  
Keri Nicoll ◽  
...  

Abstract. A tethered balloon system (TBS) has been developed and is being operated by Sandia National Laboratories (SNL) on behalf of the U.S. Department of Energy’s (DOE) Atmospheric Radiation Measurement (ARM) User Facility in order to collect in situ atmospheric measurements within mixed-phase Arctic clouds. Periodic tethered balloon flights have been conducted since 2015 within restricted airspace at ARM’s Advanced Mobile Facility 3 (AMF3) in Oliktok Point, Alaska, as part of the AALCO (Aerial Assessment of Liquid in Clouds at Oliktok), ERASMUS (Evaluation of Routine Atmospheric Sounding Measurements using Unmanned Systems), and POPEYE (Profiling at Oliktok Point to Enhance YOPP Experiments) field campaigns. The tethered balloon system uses helium-filled 34 m3 helikites and 79 and 104 m3 aerostats to suspend instrumentation that is used to measure aerosol particle size distributions, temperature, horizontal wind, pressure, relative humidity, turbulence, and cloud particle properties and to calibrate ground-based remote sensing instruments. Supercooled liquid water content (SLWC) sondes using the vibrating wire principle, developed by Anasphere Inc., were operated at Oliktok Point at multiple altitudes on the TBS within mixed-phase clouds for over 200 hours Sonde-collected SLWC data were compared with liquid water content derived from a microwave radiometer, Ka-band ARM Zenith radar, and ceilometer at the AMF3, as well as liquid water content derived from AMF3 radiosonde flights. The in situ data collected by the Anasphere sensors were also compared with data collected simultaneously by an alternative SLWC sensor developed at the University of Reading, UK; both vibrating wire instruments were typically observed to shed their ice quickly upon exiting the cloud or reaching maximum ice loading. Tethered balloon fiber optic distributed temperature sensing measurements were also compared with AMF3 radiosonde temperature measurements. Combined, the results indicate that TBS distributed temperature sensing and supercooled liquid water measurements are in reasonably good agreement with remote-sensing and radiosonde-based measurements of both properties. From these measurements and sensor evaluations, tethered balloon flights are shown to offer an effective method of collecting data to inform and constrain numerical models, calibrate and validate remote sensing instruments, and characterize the flight environment of unmanned aircraft, circumventing the difficulties of in-cloud unmanned aircraft flights such as limited flight time and in-flight icing.


2011 ◽  
Vol 24 (9) ◽  
pp. 2405-2418 ◽  
Author(s):  
Anthony E. Morrison ◽  
Steven T. Siems ◽  
Michael J. Manton

Abstract Moderate Resolution Imaging Spectroradiometer (MODIS) Level 2 observations from the Terra satellite are used to create a 3-yr climatology of cloud-top phase over a section of the Southern Ocean (south of Australia) and the North Pacific Ocean. The intent is to highlight the extensive presence of supercooled liquid water over the Southern Ocean region, particularly during summer. The phase of such clouds directly affects the absorbed shortwave radiation, which has recently been found to be “poorly simulated in both state-of-the-art reanalysis and coupled global climate models” (Trenberth and Fasullo). The climatology finds that supercooled liquid water is present year-round in the low-altitude clouds across this section of the Southern Ocean. Further, the MODIS cloud phase algorithm identifies very few glaciated cloud tops at temperatures above −20°C, rather inferring a large portion of “uncertain” cloud tops. Between 50° and 60°S during the summer, the albedo effect is compounded by a seasonal reduction in high-level cirrus. This is in direct contrast to the Bering Sea and Gulf of Alaska. Here MODIS finds a higher likelihood of observing warm liquid water clouds during summer and a reduction in the relative frequency of cloud tops within the 0° to −20°C temperature range. As the MODIS cloud phase product has limited ability to confidently identify cloud-top phase between −5° and −25°C, future research should include observations from the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) and other space-based sensors to help with the classification within this temperature range. Further, multiregion in situ verification of any remotely sensed observations is vital to further understanding the cloud phase processes.


1986 ◽  
Vol 43 ◽  
pp. 127-138 ◽  
Author(s):  
Geoffrey E. Hill

Abstract This article is a review of work on the subject of seedability of winter orographic clouds for increasing precipitation. Various aspects of seedability are examined in the review, including definitions, distribution of supercooled liquid water, related meteorological factors, relationship of supercooled liquid water to storm stage, factors governing seedability, and the use of seeding criteria. Of particular interest is the conclusion that seedability is greatest when supercooled liquid water concentrations are large and at the same time precipitation rates are small. Such a combination of conditions is favored if the cloud-top temperature is warmer than a limiting value and as the cross-barrier wind speed at mountaintop levels increases. It is also suggested that cloud seeding is best initiated in accordance with direct measurements of supercooled liquid water, precipitation, and cross-barrier wind speed. However, in forecasting these conditions or in continuation of seeding previously initiated, the cloud-top temperature and cross-barrier wind speed are the most useful quantities.


2017 ◽  
Vol 10 (9) ◽  
pp. 3215-3230 ◽  
Author(s):  
André Ehrlich ◽  
Eike Bierwirth ◽  
Larysa Istomina ◽  
Manfred Wendisch

Abstract. The passive solar remote sensing of cloud properties over highly reflecting ground is challenging, mostly due to the low contrast between the cloud reflectivity and that of the underlying surfaces (sea ice and snow). Uncertainties in the retrieved cloud optical thickness τ and cloud droplet effective radius reff, C may arise from uncertainties in the assumed spectral surface albedo, which is mainly determined by the generally unknown effective snow grain size reff, S. Therefore, in a first step the effects of the assumed snow grain size are systematically quantified for the conventional bispectral retrieval technique of τ and reff, C for liquid water clouds. In general, the impact of uncertainties of reff, S is largest for small snow grain sizes. While the uncertainties of retrieved τ are independent of the cloud optical thickness and solar zenith angle, the bias of retrieved reff, C increases for optically thin clouds and high Sun. The largest deviations between the retrieved and true original values are found with 83 % for τ and 62 % for reff, C. In the second part of the paper a retrieval method is presented that simultaneously derives all three parameters (τ, reff, C, reff, S) and therefore accounts for changes in the snow grain size. Ratios of spectral cloud reflectivity measurements at the three wavelengths λ1 = 1040 nm (sensitive to reff, S), λ2 = 1650 nm (sensitive to τ), and λ3 = 2100 nm (sensitive to reff, C) are combined in a trispectral retrieval algorithm. In a feasibility study, spectral cloud reflectivity measurements collected by the Spectral Modular Airborne Radiation measurement sysTem (SMART) during the research campaign Vertical Distribution of Ice in Arctic Mixed-Phase Clouds (VERDI, April/May 2012) were used to test the retrieval procedure. Two cases of observations above the Canadian Beaufort Sea, one with dense snow-covered sea ice and another with a distinct snow-covered sea ice edge are analysed. The retrieved values of τ, reff, C, and reff, S show a continuous transition of cloud properties across snow-covered sea ice and open water and are consistent with estimates based on satellite data. It is shown that the uncertainties of the trispectral retrieval increase for high values of τ, and low reff, S but nevertheless allow the effective snow grain size in cloud-covered areas to be estimated.


2001 ◽  
Vol 59-60 ◽  
pp. 295-312 ◽  
Author(s):  
Steven P Love ◽  
Anthony B Davis ◽  
Cheng Ho ◽  
Charles A Rohde

Sign in / Sign up

Export Citation Format

Share Document